
Lecture 5
Av. case analysis of quick sort, 

divide and conquer, 
mergesort

CS 161 Design and Analysis of Algorithms 
Ioannis Panageas



2-33

Pseudocode for Quicksort

def quickSort(A,first,last):

if first < last:

splitpoint = split(A,first,last)

quickSort(A,first,splitpoint-1)

quickSort(A,splitpoint+1,last)

< x

first

x

splitpoint

≥ x

last

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-34

The split step

def split(A,first,last):

splitpoint = first

x = A[first]

for k = first+1 to last do:

if A[k] < x:

A[splitpoint+1] ↔ A[k]

splitpoint = splitpoint + 1

A[first] ↔ A[splitpoint]

return splitpoint

Loop invariants:

I A[first+1..splitpoint] contains keys < x .

I A[splitpoint+1..k-1] contains keys ≥ x .

I A[k..last] contains unprocessed keys.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-35

The split step
At start:

x

first

splitpoint

?

k last

In middle:

x

first

< x

splitpoint

≥ x ?

k last

At end:

x

first

< x

splitpoint

≥ x

last

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-39

A bad case case for Quicksort: 1, 2, 3, . . . , n − 1, n

1 2 3 . . . n− 1 n

2 3 . . . n− 1 n

3 . . . n− 1 n

n− 1 n

n

(n
2

)
comparisons required. So the worst-case running time for

Quicksort is Θ(n2).

But what about the average case . . . ?

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-39

A bad case case for Quicksort: 1, 2, 3, . . . , n − 1, n

1 2 3 . . . n− 1 n

2 3 . . . n− 1 n

3 . . . n− 1 n

n− 1 n

n

(n
2

)
comparisons required. So the worst-case running time for

Quicksort is Θ(n2). But what about the average case . . . ?

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-40

Average-case analysis of Quicksort:

Our approach:

1. Use the binary tree of sorted lists

2. Number the items in sorted order

3. Calculate the probability that two items get compared

4. Use this to compute the expected number of comparisons
performed by Quicksort.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-40

Average-case analysis of Quicksort:

Our approach:

1. Use the binary tree of sorted lists

2. Number the items in sorted order

3. Calculate the probability that two items get compared

4. Use this to compute the expected number of comparisons
performed by Quicksort.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-40

Average-case analysis of Quicksort:

Our approach:

1. Use the binary tree of sorted lists

2. Number the items in sorted order

3. Calculate the probability that two items get compared

4. Use this to compute the expected number of comparisons
performed by Quicksort.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-40

Average-case analysis of Quicksort:

Our approach:

1. Use the binary tree of sorted lists

2. Number the items in sorted order

3. Calculate the probability that two items get compared

4. Use this to compute the expected number of comparisons
performed by Quicksort.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-40

Average-case analysis of Quicksort:

Our approach:

1. Use the binary tree of sorted lists

2. Number the items in sorted order

3. Calculate the probability that two items get compared

4. Use this to compute the expected number of comparisons
performed by Quicksort.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-41

Average-case analysis of Quicksort:

22

15 23 22 36 83

18 23 15 22 79 36 83

27 83 23 36 15 79 22 18

Sorted order: 15 18 22 23 27 36 79 83

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-42

Average-case analysis of Quicksort

I Number the keys in sorted order: S1 < S2 < · · · < Sn.
I Fact about comparisons: During the run of Quicksort, two

keys Si and Sj get compared if and only if the first key from
the set of keys {Si ,Si+1, . . . ,Sj} to be chosen as a pivot is
either Si or Sj .

I If some key Sk is chosen first with Si < Sk < Sj , then Si goes
in the left half, Sj goes in the right half, and Si and Sj never
get compared.

I If Si is chosen first, it is compared against all the other keys in
the set in the split step (including Sj).

I Similar if Sj is chosen first.

Examples:

I 23 and 22 (both statements true)

I 36 and 83 (both statements false)

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-42

Average-case analysis of Quicksort

I Number the keys in sorted order: S1 < S2 < · · · < Sn.

I Fact about comparisons: During the run of Quicksort, two
keys Si and Sj get compared if and only if the first key from
the set of keys {Si ,Si+1, . . . ,Sj} to be chosen as a pivot is
either Si or Sj .

I If some key Sk is chosen first with Si < Sk < Sj , then Si goes
in the left half, Sj goes in the right half, and Si and Sj never
get compared.

I If Si is chosen first, it is compared against all the other keys in
the set in the split step (including Sj).

I Similar if Sj is chosen first.

Examples:

I 23 and 22 (both statements true)

I 36 and 83 (both statements false)

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-42

Average-case analysis of Quicksort

I Number the keys in sorted order: S1 < S2 < · · · < Sn.
I Fact about comparisons: During the run of Quicksort, two

keys Si and Sj get compared if and only if the first key from
the set of keys {Si ,Si+1, . . . ,Sj} to be chosen as a pivot is
either Si or Sj .

I If some key Sk is chosen first with Si < Sk < Sj , then Si goes
in the left half, Sj goes in the right half, and Si and Sj never
get compared.

I If Si is chosen first, it is compared against all the other keys in
the set in the split step (including Sj).

I Similar if Sj is chosen first.

Examples:

I 23 and 22 (both statements true)

I 36 and 83 (both statements false)

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-42

Average-case analysis of Quicksort

I Number the keys in sorted order: S1 < S2 < · · · < Sn.
I Fact about comparisons: During the run of Quicksort, two

keys Si and Sj get compared if and only if the first key from
the set of keys {Si ,Si+1, . . . ,Sj} to be chosen as a pivot is
either Si or Sj .

I If some key Sk is chosen first with Si < Sk < Sj , then Si goes
in the left half, Sj goes in the right half, and Si and Sj never
get compared.

I If Si is chosen first, it is compared against all the other keys in
the set in the split step (including Sj).

I Similar if Sj is chosen first.

Examples:

I 23 and 22 (both statements true)

I 36 and 83 (both statements false)

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-42

Average-case analysis of Quicksort

I Number the keys in sorted order: S1 < S2 < · · · < Sn.
I Fact about comparisons: During the run of Quicksort, two

keys Si and Sj get compared if and only if the first key from
the set of keys {Si ,Si+1, . . . ,Sj} to be chosen as a pivot is
either Si or Sj .

I If some key Sk is chosen first with Si < Sk < Sj , then Si goes
in the left half, Sj goes in the right half, and Si and Sj never
get compared.

I If Si is chosen first, it is compared against all the other keys in
the set in the split step (including Sj).

I Similar if Sj is chosen first.

Examples:

I 23 and 22 (both statements true)

I 36 and 83 (both statements false)

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-42

Average-case analysis of Quicksort

I Number the keys in sorted order: S1 < S2 < · · · < Sn.
I Fact about comparisons: During the run of Quicksort, two

keys Si and Sj get compared if and only if the first key from
the set of keys {Si ,Si+1, . . . ,Sj} to be chosen as a pivot is
either Si or Sj .

I If some key Sk is chosen first with Si < Sk < Sj , then Si goes
in the left half, Sj goes in the right half, and Si and Sj never
get compared.

I If Si is chosen first, it is compared against all the other keys in
the set in the split step (including Sj).

I Similar if Sj is chosen first.

Examples:

I 23 and 22 (both statements true)

I 36 and 83 (both statements false)

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-42

Average-case analysis of Quicksort

I Number the keys in sorted order: S1 < S2 < · · · < Sn.
I Fact about comparisons: During the run of Quicksort, two

keys Si and Sj get compared if and only if the first key from
the set of keys {Si ,Si+1, . . . ,Sj} to be chosen as a pivot is
either Si or Sj .

I If some key Sk is chosen first with Si < Sk < Sj , then Si goes
in the left half, Sj goes in the right half, and Si and Sj never
get compared.

I If Si is chosen first, it is compared against all the other keys in
the set in the split step (including Sj).

I Similar if Sj is chosen first.

Examples:

I 23 and 22 (both statements true)

I 36 and 83 (both statements false)

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-42

Average-case analysis of Quicksort

I Number the keys in sorted order: S1 < S2 < · · · < Sn.
I Fact about comparisons: During the run of Quicksort, two

keys Si and Sj get compared if and only if the first key from
the set of keys {Si ,Si+1, . . . ,Sj} to be chosen as a pivot is
either Si or Sj .

I If some key Sk is chosen first with Si < Sk < Sj , then Si goes
in the left half, Sj goes in the right half, and Si and Sj never
get compared.

I If Si is chosen first, it is compared against all the other keys in
the set in the split step (including Sj).

I Similar if Sj is chosen first.

Examples:

I 23 and 22 (both statements true)

I 36 and 83 (both statements false)

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-42

Average-case analysis of Quicksort

I Number the keys in sorted order: S1 < S2 < · · · < Sn.
I Fact about comparisons: During the run of Quicksort, two

keys Si and Sj get compared if and only if the first key from
the set of keys {Si ,Si+1, . . . ,Sj} to be chosen as a pivot is
either Si or Sj .

I If some key Sk is chosen first with Si < Sk < Sj , then Si goes
in the left half, Sj goes in the right half, and Si and Sj never
get compared.

I If Si is chosen first, it is compared against all the other keys in
the set in the split step (including Sj).

I Similar if Sj is chosen first.

Examples:

I 23 and 22 (both statements true)

I 36 and 83 (both statements false)

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-43

Average-case analysis of Quicksort

Assume:

I All n keys are distinct

I All permutations are equally likely

I The keys in sorted order are S1 < S2 < · · · < Sn.

Let Pi ,j = The probability that keys Si and Sj are compared
with each other during the invocation of quicksort

Then by Fact about comparisons on previous slide:

Pi ,j = The probability that the first key from
{Si ,Si+1, . . . ,Sj} to be chosen as a pivot value is
either Si or Sj

=
2

j − i + 1

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-43

Average-case analysis of Quicksort

Assume:

I All n keys are distinct

I All permutations are equally likely

I The keys in sorted order are S1 < S2 < · · · < Sn.

Let Pi ,j = The probability that keys Si and Sj are compared
with each other during the invocation of quicksort

Then by Fact about comparisons on previous slide:

Pi ,j = The probability that the first key from
{Si ,Si+1, . . . ,Sj} to be chosen as a pivot value is
either Si or Sj

=
2

j − i + 1

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-43

Average-case analysis of Quicksort

Assume:

I All n keys are distinct

I All permutations are equally likely

I The keys in sorted order are S1 < S2 < · · · < Sn.

Let Pi ,j = The probability that keys Si and Sj are compared
with each other during the invocation of quicksort

Then by Fact about comparisons on previous slide:

Pi ,j = The probability that the first key from
{Si ,Si+1, . . . ,Sj} to be chosen as a pivot value is
either Si or Sj

=
2

j − i + 1

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-43

Average-case analysis of Quicksort

Assume:

I All n keys are distinct

I All permutations are equally likely

I The keys in sorted order are S1 < S2 < · · · < Sn.

Let Pi ,j = The probability that keys Si and Sj are compared
with each other during the invocation of quicksort

Then by Fact about comparisons on previous slide:

Pi ,j = The probability that the first key from
{Si ,Si+1, . . . ,Sj} to be chosen as a pivot value is
either Si or Sj

=
2

j − i + 1

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-43

Average-case analysis of Quicksort

Assume:

I All n keys are distinct

I All permutations are equally likely

I The keys in sorted order are S1 < S2 < · · · < Sn.

Let Pi ,j = The probability that keys Si and Sj are compared
with each other during the invocation of quicksort

Then by Fact about comparisons on previous slide:

Pi ,j = The probability that the first key from
{Si ,Si+1, . . . ,Sj} to be chosen as a pivot value is
either Si or Sj

=
2

j − i + 1

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-43

Average-case analysis of Quicksort

Assume:

I All n keys are distinct

I All permutations are equally likely

I The keys in sorted order are S1 < S2 < · · · < Sn.

Let Pi ,j = The probability that keys Si and Sj are compared
with each other during the invocation of quicksort

Then by Fact about comparisons on previous slide:

Pi ,j = The probability that the first key from
{Si ,Si+1, . . . ,Sj} to be chosen as a pivot value is
either Si or Sj

=
2

j − i + 1

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-43

Average-case analysis of Quicksort

Assume:

I All n keys are distinct

I All permutations are equally likely

I The keys in sorted order are S1 < S2 < · · · < Sn.

Let Pi ,j = The probability that keys Si and Sj are compared
with each other during the invocation of quicksort

Then by Fact about comparisons on previous slide:

Pi ,j = The probability that the first key from
{Si ,Si+1, . . . ,Sj} to be chosen as a pivot value is
either Si or Sj

=
2

j − i + 1

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-43

Average-case analysis of Quicksort

Assume:

I All n keys are distinct

I All permutations are equally likely

I The keys in sorted order are S1 < S2 < · · · < Sn.

Let Pi ,j = The probability that keys Si and Sj are compared
with each other during the invocation of quicksort

Then by Fact about comparisons on previous slide:

Pi ,j = The probability that the first key from
{Si ,Si+1, . . . ,Sj} to be chosen as a pivot value is
either Si or Sj

=
2

j − i + 1

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-44

Average-case analysis of Quicksort
Define indicator random variables {Xi ,j : 1 ≤ i < j ≤ n}

Xi ,j =

{
1 if keys Si and Sj get compared
0 if keys Si and Sj do not get compared

1. The total number of comparisons is:
n∑

i=1

n∑

j=i+1

Xi ,j

2. The expected (average) total number of comparisons is:

E




n∑

i=1

n∑

j=i+1

Xi ,j


 =

n∑

i=1

n∑

j=i+1

E (Xi ,j)

3. The expected value of Xi ,j is:

E (Xi ,j) = Pi ,j =
2

j − i + 1

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-44

Average-case analysis of Quicksort
Define indicator random variables {Xi ,j : 1 ≤ i < j ≤ n}

Xi ,j =

{
1 if keys Si and Sj get compared
0 if keys Si and Sj do not get compared

1. The total number of comparisons is:
n∑

i=1

n∑

j=i+1

Xi ,j

2. The expected (average) total number of comparisons is:

E




n∑

i=1

n∑

j=i+1

Xi ,j


 =

n∑

i=1

n∑

j=i+1

E (Xi ,j)

3. The expected value of Xi ,j is:

E (Xi ,j) = Pi ,j =
2

j − i + 1

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-44

Average-case analysis of Quicksort
Define indicator random variables {Xi ,j : 1 ≤ i < j ≤ n}

Xi ,j =

{
1 if keys Si and Sj get compared
0 if keys Si and Sj do not get compared

1. The total number of comparisons is:
n∑

i=1

n∑

j=i+1

Xi ,j

2. The expected (average) total number of comparisons is:

E




n∑

i=1

n∑

j=i+1

Xi ,j


 =

n∑

i=1

n∑

j=i+1

E (Xi ,j)

3. The expected value of Xi ,j is:

E (Xi ,j) = Pi ,j =
2

j − i + 1

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-44

Average-case analysis of Quicksort
Define indicator random variables {Xi ,j : 1 ≤ i < j ≤ n}

Xi ,j =

{
1 if keys Si and Sj get compared
0 if keys Si and Sj do not get compared

1. The total number of comparisons is:
n∑

i=1

n∑

j=i+1

Xi ,j

2. The expected (average) total number of comparisons is:

E




n∑

i=1

n∑

j=i+1

Xi ,j


 =

n∑

i=1

n∑

j=i+1

E (Xi ,j)

3. The expected value of Xi ,j is:

E (Xi ,j) = Pi ,j =
2

j − i + 1
CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-45

Average-case analysis of Quicksort
Hence the expected number of comparisons is

n∑

i=1

n∑

j=i+1

E (Xi ,j)

=
n∑

i=1

n∑

j=i+1

2

j − i + 1

=
n∑

i=1

n−i+1∑

k=2

2

k
(k = j − i + 1)

<
n∑

i=1

n∑

k=1

2

k

= 2
n∑

i=1

n∑

k=1

1

k

= 2
n∑

i=1

Hn = 2nHn ∈ O(n lg n).

So the average time for Quicksort is O(n lg n).

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-45

Average-case analysis of Quicksort
Hence the expected number of comparisons is

n∑

i=1

n∑

j=i+1

E (Xi ,j) =
n∑

i=1

n∑

j=i+1

2

j − i + 1

=
n∑

i=1

n−i+1∑

k=2

2

k
(k = j − i + 1)

<
n∑

i=1

n∑

k=1

2

k

= 2
n∑

i=1

n∑

k=1

1

k

= 2
n∑

i=1

Hn = 2nHn ∈ O(n lg n).

So the average time for Quicksort is O(n lg n).

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-45

Average-case analysis of Quicksort
Hence the expected number of comparisons is

n∑

i=1

n∑

j=i+1

E (Xi ,j) =
n∑

i=1

n∑

j=i+1

2

j − i + 1

=
n∑

i=1

n−i+1∑

k=2

2

k
(k = j − i + 1)

<
n∑

i=1

n∑

k=1

2

k

= 2
n∑

i=1

n∑

k=1

1

k

= 2
n∑

i=1

Hn = 2nHn ∈ O(n lg n).

So the average time for Quicksort is O(n lg n).

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-45

Average-case analysis of Quicksort
Hence the expected number of comparisons is

n∑

i=1

n∑

j=i+1

E (Xi ,j) =
n∑

i=1

n∑

j=i+1

2

j − i + 1

=
n∑

i=1

n−i+1∑

k=2

2

k
(k = j − i + 1)

<

n∑

i=1

n∑

k=1

2

k

= 2
n∑

i=1

n∑

k=1

1

k

= 2
n∑

i=1

Hn = 2nHn ∈ O(n lg n).

So the average time for Quicksort is O(n lg n).

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-45

Average-case analysis of Quicksort
Hence the expected number of comparisons is

n∑

i=1

n∑

j=i+1

E (Xi ,j) =
n∑

i=1

n∑

j=i+1

2

j − i + 1

=
n∑

i=1

n−i+1∑

k=2

2

k
(k = j − i + 1)

<

n∑

i=1

n∑

k=1

2

k

= 2
n∑

i=1

n∑

k=1

1

k

= 2
n∑

i=1

Hn = 2nHn ∈ O(n lg n).

So the average time for Quicksort is O(n lg n).

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-45

Average-case analysis of Quicksort
Hence the expected number of comparisons is

n∑

i=1

n∑

j=i+1

E (Xi ,j) =
n∑

i=1

n∑

j=i+1

2

j − i + 1

=
n∑

i=1

n−i+1∑

k=2

2

k
(k = j − i + 1)

<

n∑

i=1

n∑

k=1

2

k

= 2
n∑

i=1

n∑

k=1

1

k

= 2
n∑

i=1

Hn

= 2nHn ∈ O(n lg n).

So the average time for Quicksort is O(n lg n).

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-45

Average-case analysis of Quicksort
Hence the expected number of comparisons is

n∑

i=1

n∑

j=i+1

E (Xi ,j) =
n∑

i=1

n∑

j=i+1

2

j − i + 1

=
n∑

i=1

n−i+1∑

k=2

2

k
(k = j − i + 1)

<

n∑

i=1

n∑

k=1

2

k

= 2
n∑

i=1

n∑

k=1

1

k

= 2
n∑

i=1

Hn = 2nHn

∈ O(n lg n).

So the average time for Quicksort is O(n lg n).

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-45

Average-case analysis of Quicksort
Hence the expected number of comparisons is

n∑

i=1

n∑

j=i+1

E (Xi ,j) =
n∑

i=1

n∑

j=i+1

2

j − i + 1

=
n∑

i=1

n−i+1∑

k=2

2

k
(k = j − i + 1)

<

n∑

i=1

n∑

k=1

2

k

= 2
n∑

i=1

n∑

k=1

1

k

= 2
n∑

i=1

Hn = 2nHn ∈ O(n lg n).

So the average time for Quicksort is O(n lg n).

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-45

Average-case analysis of Quicksort
Hence the expected number of comparisons is

n∑

i=1

n∑

j=i+1

E (Xi ,j) =
n∑

i=1

n∑

j=i+1

2

j − i + 1

=
n∑

i=1

n−i+1∑

k=2

2

k
(k = j − i + 1)

<

n∑

i=1

n∑

k=1

2

k

= 2
n∑

i=1

n∑

k=1

1

k

= 2
n∑

i=1

Hn = 2nHn ∈ O(n lg n).

So the average time for Quicksort is O(n lg n).

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-45

Average-case analysis of Quicksort
Hence the expected number of comparisons is

n∑

i=1

n∑

j=i+1

E (Xi ,j) =
n∑

i=1

n∑

j=i+1

2

j − i + 1

=
n∑

i=1

n−i+1∑

k=2

2

k
(k = j − i + 1)

<

n∑

i=1

n∑

k=1

2

k

= 2
n∑

i=1

n∑

k=1

1

k

= 2
n∑

i=1

Hn = 2nHn ∈ O(n lg n).

So the average time for Quicksort is O(n lg n).
CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-30

Divide and Conquer

Divide and conquer paradigm

1. Split problem into subproblem(s)

2. Solve each subproblem (usually via recursive call)

3. Combine solution of subproblem(s) into solution of original
problem

We will discuss two sorting algorithms based on this paradigm:
I Quicksort (done) 
I Mergesort

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-47

MergeSort

I Split array into two equal subarrays

I Sort both subarrays (recursively)

I Merge two sorted subarrays

first mid last

def mergeSort(A,first,last):

if first < last:

mid = b(first + last)/2c
mergeSort(A,first,mid)

mergeSort(A,mid+1,last)

merge(A,first,mid,mid+1,last)

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-47

MergeSort

I Split array into two equal subarrays

I Sort both subarrays (recursively)

I Merge two sorted subarrays

first mid last

def mergeSort(A,first,last):

if first < last:

mid = b(first + last)/2c
mergeSort(A,first,mid)

mergeSort(A,mid+1,last)

merge(A,first,mid,mid+1,last)

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-47

MergeSort

I Split array into two equal subarrays

I Sort both subarrays (recursively)

I Merge two sorted subarrays

first mid last

def mergeSort(A,first,last):

if first < last:

mid = b(first + last)/2c
mergeSort(A,first,mid)

mergeSort(A,mid+1,last)

merge(A,first,mid,mid+1,last)

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-47

MergeSort

I Split array into two equal subarrays

I Sort both subarrays (recursively)

I Merge two sorted subarrays

first mid last

def mergeSort(A,first,last):

if first < last:

mid = b(first + last)/2c
mergeSort(A,first,mid)

mergeSort(A,mid+1,last)

merge(A,first,mid,mid+1,last)

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-47

MergeSort

I Split array into two equal subarrays

I Sort both subarrays (recursively)

I Merge two sorted subarrays

first mid last

def mergeSort(A,first,last):

if first < last:

mid = b(first + last)/2c
mergeSort(A,first,mid)

mergeSort(A,mid+1,last)

merge(A,first,mid,mid+1,last)

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-48

The merge step

first1 last1 first2 last2

A

temp

19 26 42 71 14 24 31 39

14 19 24 26 31 39 42 71

Merging two lists of total size n requires at most n − 1
comparisons.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-48

The merge step
first1 last1 first2 last2

A

temp

19 26 42 71 14 24 31 39

14 19 24 26 31 39 42 71

Merging two lists of total size n requires at most n − 1
comparisons.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-48

The merge step
first1 last1 first2 last2

A

temp

19 26 42 71 14 24 31 39

14 19 24 26 31 39 42 71

Merging two lists of total size n requires at most n − 1
comparisons.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-48

The merge step
first1 last1 first2 last2

A

temp

19 26 42 71 14 24 31 39

14 19 24 26 31 39 42 71

Merging two lists of total size n requires at most n − 1
comparisons.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-49

Code for the merge step

def merge(A,first1,last1,first2,last2):

index1 = first1; index2 = first2; tempIndex = 0

// Merge into temp array until one input array is exhausted

while (index1 <= last1) and (index2 <= last2)

if A[index1] <= A[index2]:

temp[tempIndex++] = A[index1++]

else:

temp[tempIndex++] = A[index2++]

// Copy appropriate trailer portion

while (index1 <= last1): temp[tempIndex++] = A[index1++]

while (index2 <= last2): temp[tempIndex++] = A[index2++]

// Copy temp array back to A array

tempIndex = 0; index = first1

while (index <= last2): A[index++] = temp[tempIndex++]

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-50

Analysis of Mergesort

T (n) = number of comparisons required to sort n items in the
worst case

T (n) =

{
T
(⌈

n
2

⌉)
+ T

(⌊
n
2

⌋)
+ n − 1, n > 1

0, n = 1

The asymptotic solution of this recurrence equation is

T (n) = Θ(n log n)

The exact solution of this recurrence equation is

T (n) = ndlg ne − 2dlg ne + 1

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-50

Analysis of Mergesort

T (n) = number of comparisons required to sort n items in the
worst case

T (n) =

{
T
(⌈

n
2

⌉)
+ T

(⌊
n
2

⌋)
+ n − 1, n > 1

0, n = 1

The asymptotic solution of this recurrence equation is

T (n) = Θ(n log n)

The exact solution of this recurrence equation is

T (n) = ndlg ne − 2dlg ne + 1

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-50

Analysis of Mergesort

T (n) = number of comparisons required to sort n items in the
worst case

T (n) =

{
T
(⌈

n
2

⌉)
+ T

(⌊
n
2

⌋)
+ n − 1, n > 1

0, n = 1

The asymptotic solution of this recurrence equation is

T (n) = Θ(n log n)

The exact solution of this recurrence equation is

T (n) = ndlg ne − 2dlg ne + 1

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-50

Analysis of Mergesort

T (n) = number of comparisons required to sort n items in the
worst case

T (n) =

{
T
(⌈

n
2

⌉)
+ T

(⌊
n
2

⌋)
+ n − 1, n > 1

0, n = 1

The asymptotic solution of this recurrence equation is

T (n) = Θ(n log n)

The exact solution of this recurrence equation is

T (n) = ndlg ne − 2dlg ne + 1

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-50

Analysis of Mergesort

T (n) = number of comparisons required to sort n items in the
worst case

T (n) =

{
T
(⌈

n
2

⌉)
+ T

(⌊
n
2

⌋)
+ n − 1, n > 1

0, n = 1

The asymptotic solution of this recurrence equation is

T (n) = Θ(n log n)

The exact solution of this recurrence equation is

T (n) = ndlg ne − 2dlg ne + 1

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-51

Geometrical Application: Counting line intersections

I Input: n lines in the plane, none of which are vertical; two
vertical lines x = a and x = b (with a < b).

I Problem: Count/report all pairs of lines that intersect
between the two vertical lines x = a and x = b.

Example: n = 6 8 intersections

a b

Checking every pair of lines takes Θ(n2) time. We can do better.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-51

Geometrical Application: Counting line intersections

I Input: n lines in the plane, none of which are vertical; two
vertical lines x = a and x = b (with a < b).

I Problem: Count/report all pairs of lines that intersect
between the two vertical lines x = a and x = b.

Example: n = 6 8 intersections

a b

Checking every pair of lines takes Θ(n2) time. We can do better.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-51

Geometrical Application: Counting line intersections

I Input: n lines in the plane, none of which are vertical; two
vertical lines x = a and x = b (with a < b).

I Problem: Count/report all pairs of lines that intersect
between the two vertical lines x = a and x = b.

Example: n = 6

8 intersections

a b

Checking every pair of lines takes Θ(n2) time. We can do better.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-51

Geometrical Application: Counting line intersections

I Input: n lines in the plane, none of which are vertical; two
vertical lines x = a and x = b (with a < b).

I Problem: Count/report all pairs of lines that intersect
between the two vertical lines x = a and x = b.

Example: n = 6

8 intersections

a b

Checking every pair of lines takes Θ(n2) time. We can do better.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-51

Geometrical Application: Counting line intersections

I Input: n lines in the plane, none of which are vertical; two
vertical lines x = a and x = b (with a < b).

I Problem: Count/report all pairs of lines that intersect
between the two vertical lines x = a and x = b.

Example: n = 6 8 intersections

a b

Checking every pair of lines takes Θ(n2) time. We can do better.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-51

Geometrical Application: Counting line intersections

I Input: n lines in the plane, none of which are vertical; two
vertical lines x = a and x = b (with a < b).

I Problem: Count/report all pairs of lines that intersect
between the two vertical lines x = a and x = b.

Example: n = 6 8 intersections

a b

Checking every pair of lines takes Θ(n2) time. We can do better.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-51

Geometrical Application: Counting line intersections

I Input: n lines in the plane, none of which are vertical; two
vertical lines x = a and x = b (with a < b).

I Problem: Count/report all pairs of lines that intersect
between the two vertical lines x = a and x = b.

Example: n = 6 8 intersections

a b

Checking every pair of lines takes Θ(n2) time. We can do better.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-52

Geometrical Application: Counting line intersections

1. Sort the lines according to the y -coordinate of their
intersection with the line x = a. Number the lines in sorted
order. [O(n log n) time]

2. Produce the sequence of line numbers sorted according to the
y -coordinate of their intersection with the line x = b
[O(n log n) time]

3. Count/report inversions in the sequence produced in step 2.

a b

So the problem reduces to counting/reporting inversions.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-52

Geometrical Application: Counting line intersections

1. Sort the lines according to the y -coordinate of their
intersection with the line x = a. Number the lines in sorted
order. [O(n log n) time]

2. Produce the sequence of line numbers sorted according to the
y -coordinate of their intersection with the line x = b
[O(n log n) time]

3. Count/report inversions in the sequence produced in step 2.

a b

So the problem reduces to counting/reporting inversions.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-52

Geometrical Application: Counting line intersections
1. Sort the lines according to the y -coordinate of their

intersection with the line x = a. Number the lines in sorted
order.

[O(n log n) time]
2. Produce the sequence of line numbers sorted according to the

y -coordinate of their intersection with the line x = b
[O(n log n) time]

3. Count/report inversions in the sequence produced in step 2.

a b

1

2

3

4

5

6

So the problem reduces to counting/reporting inversions.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-52

Geometrical Application: Counting line intersections
1. Sort the lines according to the y -coordinate of their

intersection with the line x = a. Number the lines in sorted
order. [O(n log n) time]

2. Produce the sequence of line numbers sorted according to the
y -coordinate of their intersection with the line x = b
[O(n log n) time]

3. Count/report inversions in the sequence produced in step 2.

a b

1

2

3

4

5

6

So the problem reduces to counting/reporting inversions.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-52

Geometrical Application: Counting line intersections
1. Sort the lines according to the y -coordinate of their

intersection with the line x = a. Number the lines in sorted
order. [O(n log n) time]

2. Produce the sequence of line numbers sorted according to the
y -coordinate of their intersection with the line x = b

[O(n log n) time]
3. Count/report inversions in the sequence produced in step 2.

a b

1

2

3

4

5

6

1

2

3

4

5

6

So the problem reduces to counting/reporting inversions.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-52

Geometrical Application: Counting line intersections
1. Sort the lines according to the y -coordinate of their

intersection with the line x = a. Number the lines in sorted
order. [O(n log n) time]

2. Produce the sequence of line numbers sorted according to the
y -coordinate of their intersection with the line x = b
[O(n log n) time]

3. Count/report inversions in the sequence produced in step 2.

a b

1

2

3

4

5

6

1

2

3

4

5

6

So the problem reduces to counting/reporting inversions.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-52

Geometrical Application: Counting line intersections
1. Sort the lines according to the y -coordinate of their

intersection with the line x = a. Number the lines in sorted
order. [O(n log n) time]

2. Produce the sequence of line numbers sorted according to the
y -coordinate of their intersection with the line x = b
[O(n log n) time]

3. Count/report inversions in the sequence produced in step 2.

a b

1

2

3

4

5

6

1

2

3

4

5

6

So the problem reduces to counting/reporting inversions.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-52

Geometrical Application: Counting line intersections
1. Sort the lines according to the y -coordinate of their

intersection with the line x = a. Number the lines in sorted
order. [O(n log n) time]

2. Produce the sequence of line numbers sorted according to the
y -coordinate of their intersection with the line x = b
[O(n log n) time]

3. Count/report inversions in the sequence produced in step 2.

a b

1

2

3

4

5

6

1

2

3

4

5

6

So the problem reduces to counting/reporting inversions.
CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-53

Counting Inversions: An Application of Mergesort

An inversion in a sequence or list is a pair of items such that the
larger one precedes the smaller one.

Example: The list [18, 29, 12, 15, 32, 10] has 9 inversions:

(18, 12), (18, 15), (18, 10), (29, 12), (29, 15), (29, 10), (12, 10), (15, 10), (32, 10)

In a list of size n, there can be as many as
(n
2

)
inversions.

Problem: Given a list, compute the number of inversions.

Brute force solution: Check each pair i , j with i < j to see if
L[i ] > L[j ]. This gives a Θ(n2) algorithm. We can do better.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-53

Counting Inversions: An Application of Mergesort

An inversion in a sequence or list is a pair of items such that the
larger one precedes the smaller one.

Example: The list [18, 29, 12, 15, 32, 10] has 9 inversions:

(18, 12), (18, 15), (18, 10), (29, 12), (29, 15), (29, 10), (12, 10), (15, 10), (32, 10)

In a list of size n, there can be as many as
(n
2

)
inversions.

Problem: Given a list, compute the number of inversions.

Brute force solution: Check each pair i , j with i < j to see if
L[i ] > L[j ]. This gives a Θ(n2) algorithm. We can do better.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-53

Counting Inversions: An Application of Mergesort

An inversion in a sequence or list is a pair of items such that the
larger one precedes the smaller one.

Example: The list [18, 29, 12, 15, 32, 10] has 9 inversions:

(18, 12), (18, 15), (18, 10), (29, 12), (29, 15), (29, 10), (12, 10), (15, 10), (32, 10)

In a list of size n, there can be as many as
(n
2

)
inversions.

Problem: Given a list, compute the number of inversions.

Brute force solution: Check each pair i , j with i < j to see if
L[i ] > L[j ]. This gives a Θ(n2) algorithm. We can do better.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-53

Counting Inversions: An Application of Mergesort

An inversion in a sequence or list is a pair of items such that the
larger one precedes the smaller one.

Example: The list [18, 29, 12, 15, 32, 10] has 9 inversions:

(18, 12), (18, 15), (18, 10), (29, 12), (29, 15), (29, 10), (12, 10), (15, 10), (32, 10)

In a list of size n, there can be as many as
(n
2

)
inversions.

Problem: Given a list, compute the number of inversions.

Brute force solution: Check each pair i , j with i < j to see if
L[i ] > L[j ]. This gives a Θ(n2) algorithm. We can do better.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-53

Counting Inversions: An Application of Mergesort

An inversion in a sequence or list is a pair of items such that the
larger one precedes the smaller one.

Example: The list [18, 29, 12, 15, 32, 10] has 9 inversions:

(18, 12), (18, 15), (18, 10), (29, 12), (29, 15), (29, 10), (12, 10), (15, 10), (32, 10)

In a list of size n, there can be as many as
(n
2

)
inversions.

Problem: Given a list, compute the number of inversions.

Brute force solution: Check each pair i , j with i < j to see if
L[i ] > L[j ]. This gives a Θ(n2) algorithm. We can do better.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-53

Counting Inversions: An Application of Mergesort

An inversion in a sequence or list is a pair of items such that the
larger one precedes the smaller one.

Example: The list [18, 29, 12, 15, 32, 10] has 9 inversions:

(18, 12), (18, 15), (18, 10), (29, 12), (29, 15), (29, 10), (12, 10), (15, 10), (32, 10)

In a list of size n, there can be as many as
(n
2

)
inversions.

Problem: Given a list, compute the number of inversions.

Brute force solution: Check each pair i , j with i < j to see if
L[i ] > L[j ].

This gives a Θ(n2) algorithm. We can do better.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-53

Counting Inversions: An Application of Mergesort

An inversion in a sequence or list is a pair of items such that the
larger one precedes the smaller one.

Example: The list [18, 29, 12, 15, 32, 10] has 9 inversions:

(18, 12), (18, 15), (18, 10), (29, 12), (29, 15), (29, 10), (12, 10), (15, 10), (32, 10)

In a list of size n, there can be as many as
(n
2

)
inversions.

Problem: Given a list, compute the number of inversions.

Brute force solution: Check each pair i , j with i < j to see if
L[i ] > L[j ]. This gives a Θ(n2) algorithm.

We can do better.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-53

Counting Inversions: An Application of Mergesort

An inversion in a sequence or list is a pair of items such that the
larger one precedes the smaller one.

Example: The list [18, 29, 12, 15, 32, 10] has 9 inversions:

(18, 12), (18, 15), (18, 10), (29, 12), (29, 15), (29, 10), (12, 10), (15, 10), (32, 10)

In a list of size n, there can be as many as
(n
2

)
inversions.

Problem: Given a list, compute the number of inversions.

Brute force solution: Check each pair i , j with i < j to see if
L[i ] > L[j ]. This gives a Θ(n2) algorithm. We can do better.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-54

Inversion Counting

Sorting is the process of removing inversions. So to count
inversions:

I Run a sorting algorithm

I Every time data is rearranged, keep track of how many
inversions are being removed.

In principle, we can use any sorting algorithm to count inversions.
Mergesort works particularly nicely.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-54

Inversion Counting

Sorting is the process of removing inversions. So to count
inversions:

I Run a sorting algorithm

I Every time data is rearranged, keep track of how many
inversions are being removed.

In principle, we can use any sorting algorithm to count inversions.
Mergesort works particularly nicely.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-54

Inversion Counting

Sorting is the process of removing inversions. So to count
inversions:

I Run a sorting algorithm

I Every time data is rearranged, keep track of how many
inversions are being removed.

In principle, we can use any sorting algorithm to count inversions.
Mergesort works particularly nicely.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-54

Inversion Counting

Sorting is the process of removing inversions. So to count
inversions:

I Run a sorting algorithm

I Every time data is rearranged, keep track of how many
inversions are being removed.

In principle, we can use any sorting algorithm to count inversions.
Mergesort works particularly nicely.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-54

Inversion Counting

Sorting is the process of removing inversions. So to count
inversions:

I Run a sorting algorithm

I Every time data is rearranged, keep track of how many
inversions are being removed.

In principle, we can use any sorting algorithm to count inversions.
Mergesort works particularly nicely.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-55

Inversion Counting with MergeSort

In Mergesort, the only time we rearrange data is during the merge
step.

first1 index1 last1 first2 index2 last2

tempindex

A

temp

The number of inversions removed is:

last1− index1 + 1

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-55

Inversion Counting with MergeSort

In Mergesort, the only time we rearrange data is during the merge
step.

first1 index1 last1 first2 index2 last2

tempindex

A

temp

The number of inversions removed is:

last1− index1 + 1

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-55

Inversion Counting with MergeSort

In Mergesort, the only time we rearrange data is during the merge
step.

first1 index1 last1 first2 index2 last2

tempindex

A

temp

The number of inversions removed is:

last1− index1 + 1

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-56

Example

19

first1

26 42

index1

71

last1

14

first2

24 31

index2

39

last2

14 19 24 26 31

2 inversions removed: (42, 31) and (71, 31)

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-56

Example

19

first1

26 42

index1

71

last1

14

first2

24 31

index2

39

last2

14 19 24 26 31

2 inversions removed: (42, 31) and (71, 31)

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-56

Example

19

first1

26 42

index1

71

last1

14

first2

24 31

index2

39

last2

14 19 24 26 31

2 inversions removed: (42, 31) and (71, 31)

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-57

Pseudocode for the merge step with inversion counting

def merge(A,first1,last1,first2,last2):

index1 = first1; index2 = first2; tempIndex = 0

invCount = 0

// Merge into temp array until one input array is exhausted

while (index1 <= last1) and (index2 <= last2)

if A[index1] <= A[index2]:

temp[tempIndex++] = A[index1++]

else:

temp[tempIndex++] = A[index2++]

invCount += last1 - index1 + 1;

// Copy appropriate trailer portion

while (index1 <= last1): temp[tempIndex++] = A[index1++]

while (index2 <= last2): temp[tempIndex++] = A[index2++]

// Copy temp array back to A array

tempIndex = 0; index = first1

while (index <= last2): A[index++] = temp[tempIndex++]

return invCount

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-57

Pseudocode for the merge step with inversion counting

def merge(A,first1,last1,first2,last2):

index1 = first1; index2 = first2; tempIndex = 0

invCount = 0

// Merge into temp array until one input array is exhausted

while (index1 <= last1) and (index2 <= last2)

if A[index1] <= A[index2]:

temp[tempIndex++] = A[index1++]

else:

temp[tempIndex++] = A[index2++]

invCount += last1 - index1 + 1;

// Copy appropriate trailer portion

while (index1 <= last1): temp[tempIndex++] = A[index1++]

while (index2 <= last2): temp[tempIndex++] = A[index2++]

// Copy temp array back to A array

tempIndex = 0; index = first1

while (index <= last2): A[index++] = temp[tempIndex++]

return invCount

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-58

Pseudocode for MergeSort with inversion counting

def mergeSort(A,first,last):

invCount = 0

if first < last:

mid = b(first + last)/2c
invCount += mergeSort(A,first,mid)

invCount += mergeSort(A,mid+1,last)

invCount += merge(A,first,mid,mid+1,last)

return invCount

Running time is the same as standard mergeSort: O(n log n)

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-58

Pseudocode for MergeSort with inversion counting

def mergeSort(A,first,last):

invCount = 0

if first < last:

mid = b(first + last)/2c
invCount += mergeSort(A,first,mid)

invCount += mergeSort(A,mid+1,last)

invCount += merge(A,first,mid,mid+1,last)

return invCount

Running time is the same as standard mergeSort: O(n log n)

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-58

Pseudocode for MergeSort with inversion counting

def mergeSort(A,first,last):

invCount = 0

if first < last:

mid = b(first + last)/2c
invCount += mergeSort(A,first,mid)

invCount += mergeSort(A,mid+1,last)

invCount += merge(A,first,mid,mid+1,last)

return invCount

Running time is the same as standard mergeSort: O(n log n)

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-59

Listing inversions

We have just seen that we can count inversions without increasing
the asymptotic running time of Mergesort. Suppose we want to list
inversions. When we remove inversions, we list all inversions
removed:

first1 index1 last1 first2 index2 last2

tempindex

A

temp

(A[index1],A[index2]), (A[index1+1],A[index2]), . . . ,
(A[last1],A[index2]).

The extra work to do the reporting is proportional to the number
of inversions reported.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-59

Listing inversions
We have just seen that we can count inversions without increasing
the asymptotic running time of Mergesort. Suppose we want to list
inversions.

When we remove inversions, we list all inversions
removed:

first1 index1 last1 first2 index2 last2

tempindex

A

temp

(A[index1],A[index2]), (A[index1+1],A[index2]), . . . ,
(A[last1],A[index2]).

The extra work to do the reporting is proportional to the number
of inversions reported.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-59

Listing inversions
We have just seen that we can count inversions without increasing
the asymptotic running time of Mergesort. Suppose we want to list
inversions. When we remove inversions, we list all inversions
removed:

first1 index1 last1 first2 index2 last2

tempindex

A

temp

(A[index1],A[index2]), (A[index1+1],A[index2]), . . . ,
(A[last1],A[index2]).

The extra work to do the reporting is proportional to the number
of inversions reported.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-59

Listing inversions
We have just seen that we can count inversions without increasing
the asymptotic running time of Mergesort. Suppose we want to list
inversions. When we remove inversions, we list all inversions
removed:

first1 index1 last1 first2 index2 last2

tempindex

A

temp

(A[index1],A[index2]), (A[index1+1],A[index2]), . . . ,
(A[last1],A[index2]).

The extra work to do the reporting is proportional to the number
of inversions reported.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-60

Inversion counting summary

Using a slight modification of Mergesort, we can . . .

I Count inversions in O(n log n) time.

I Report inversions in O(n log n + k) time, where k is the
number of inversions.

The same results hold for the line-intersection counting problem.

The reporting algorithm is an example of an output-sensitive
algorithm. The performance of the algorithm depends on the size
of the output as well as the size of the input.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-60

Inversion counting summary

Using a slight modification of Mergesort, we can . . .

I Count inversions in O(n log n) time.

I Report inversions in O(n log n + k) time, where k is the
number of inversions.

The same results hold for the line-intersection counting problem.

The reporting algorithm is an example of an output-sensitive
algorithm. The performance of the algorithm depends on the size
of the output as well as the size of the input.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-60

Inversion counting summary

Using a slight modification of Mergesort, we can . . .

I Count inversions in O(n log n) time.

I Report inversions in O(n log n + k) time, where k is the
number of inversions.

The same results hold for the line-intersection counting problem.

The reporting algorithm is an example of an output-sensitive
algorithm. The performance of the algorithm depends on the size
of the output as well as the size of the input.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-60

Inversion counting summary

Using a slight modification of Mergesort, we can . . .

I Count inversions in O(n log n) time.

I Report inversions in O(n log n + k) time, where k is the
number of inversions.

The same results hold for the line-intersection counting problem.

The reporting algorithm is an example of an output-sensitive
algorithm. The performance of the algorithm depends on the size
of the output as well as the size of the input.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-60

Inversion counting summary

Using a slight modification of Mergesort, we can . . .

I Count inversions in O(n log n) time.

I Report inversions in O(n log n + k) time, where k is the
number of inversions.

The same results hold for the line-intersection counting problem.

The reporting algorithm is an example of an output-sensitive
algorithm. The performance of the algorithm depends on the size
of the output as well as the size of the input.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine



2-60

Inversion counting summary

Using a slight modification of Mergesort, we can . . .

I Count inversions in O(n log n) time.

I Report inversions in O(n log n + k) time, where k is the
number of inversions.

The same results hold for the line-intersection counting problem.

The reporting algorithm is an example of an output-sensitive
algorithm. The performance of the algorithm depends on the size
of the output as well as the size of the input.

CompSci 161—Fall 2021— c©M. B. Dillencourt—University of California, Irvine




